1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_SIZE = 30 seed = 2
rdm = np.random.RandomState(seed)
X = rdm.randn(300,2)
Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
Y_c = [['red' if y else 'blue'] for y in Y_]
X = np.vstack(X).reshape(-1,2) Y_ = np.vstack(Y_).reshape(-1,1) print( X) print( Y_) print( Y_c)
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) plt.show()
def get_weight(shape, regularizer): w = tf.Variable(tf.random_normal(shape), dtype=tf.float32) tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) return w
def get_bias(shape): b = tf.Variable(tf.constant(0.01, shape=shape)) return b x = tf.placeholder(tf.float32, shape=(None, 2)) y_ = tf.placeholder(tf.float32, shape=(None, 1))
w1 = get_weight([2,11], 0.01) b1 = get_bias([11]) y1 = tf.nn.relu(tf.matmul(x, w1)+b1)
w2 = get_weight([11,1], 0.01) b2 = get_bias([1]) y = tf.matmul(y1, w2)+b2
loss_mse = tf.reduce_mean(tf.square(y-y_)) loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)
with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 40000 for i in range(STEPS): start = (i*BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]}) if i % 2000 == 0: loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_}) print(("After %d steps, loss is: %f" %(i, loss_mse_v))) xx, yy = np.mgrid[-3:3:.01, -3:3:.01] grid = np.c_[xx.ravel(), yy.ravel()] probs = sess.run(y, feed_dict={x:grid}) probs = probs.reshape(xx.shape) print( "w1:\n",sess.run(w1)) print( "b1:\n",sess.run(b1)) print( "w2:\n",sess.run(w2)) print( "b2:\n",sess.run(b2))
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) plt.contour(xx, yy, probs, levels=[.5]) plt.show()
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)
with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 40000 for i in range(STEPS): start = (i*BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]}) if i % 2000 == 0: loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_}) print(("After %d steps, loss is: %f" %(i, loss_v)))
xx, yy = np.mgrid[-3:3:.01, -3:3:.01] grid = np.c_[xx.ravel(), yy.ravel()] probs = sess.run(y, feed_dict={x:grid}) probs = probs.reshape(xx.shape) print( "w1:\n",sess.run(w1)) print( "b1:\n",sess.run(b1)) print( "w2:\n",sess.run(w2)) print( "b2:\n",sess.run(b2))
plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) plt.contour(xx, yy, probs, levels=[.5]) plt.show()
|